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Ideal solutions

An ideal mixture is one, for which there is no

change in volume due to mixing. In other words for

an ideal solution, partial molar volume of each

component will be equal to its pure component

volume at same temperature and pressure.
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--- Raoults law 



Ideal solutions are formed when similar

components or adjacent groups of group are mixed

ii VV 

Eg: Benzene-Toluene, Methanol- Ethanol, Hexane- Heptane

Solution undergo change in volume due to mixing 

are known as non ideal solutions

ii VV 

Eg: Methanol-Water, Ethanol-water.



Ideal solutions formed when the intermolecular

force between like molecules and unlike molecules are

of the same magnitude.

Non-ideal solutions are formed when

intermolecular forces between like molecules and unlike

molecules of different magnitude.

For ideal solutions
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Vi is the molar volume of pure component i 
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The residual volume for the pure component is
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For component i in terms of partial molar properties
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Subtracting equation (3) from (4) 
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we know that PyP ii 



equation (5) reduces to
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--Lewis Randal  rule 



Lewis Randal rule is applicable for evaluating

fugacity of components in gas mixture.

Lewis Randal rule is valid for

1. At low pressure when gas behaves ideally.

2. When Physical properties are nearly same.

3. At any pressure if component present in excess.



This law is applicable for small concentration

ranges. For ideal solution Henry’s law is given as

Henry’s Law

iii kxf 

iii kxP 

ki- Henrys Constant, -Partial molar fugacity,

-Partial pressure of component i.
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Non Ideal solutions

For ideal solutions 
iii kxf  ------------(a) 

For non ideal solutions
iiii kxf  ----------(b) 

i - is an activity coefficient of component i 
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For both ideal and Non ideal solutions the fugacity

of solution is given by equation
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Activity in Solutions:

The activity of a component in a solution is

defined as the ratio of fugacity of a component in

the solution in a given condition to the fugacity of

that component in the standard state.
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The fugacities  are related to chemical potential as 
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CflnRT

o

i

o

i  -----(2)



Subtracting equation 2 from 1
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Is the increase in chemical potential of species i when it

is brought into solution from its standard state

For ideal solutions iii fxf 
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Activity coefficients:

The calculation of fugacity of a component in a real

solution should take into account of the degree of the

departure from ideal behavior

For real solutions the partial molar fugacites .is 

given by the relation o

iiii fxf 

for ideal solutions 
o

iii fxf  1i 
Here we have observed two types of ideal behavior
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i ff  --- Lewis Randall rule or Raoults law
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i Kf  ----- Henrys law



In case of Lewis Randall rule or Raoults law
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For Henrys Law
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Effect Pressure on Activity Coefficients

Effect of pressure on fugacity 
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In terms of Partial molar properties 

RT

V

P

fln i

T

i 

















------(B) 

Equation B-A
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Vi – Pure component volume

Effect of Temperature on activity Coefficients

The effect of temperature on fugacity of a pure substance was 

given by the equation 
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Similarly for the substance in the solution (Partial molar properties)
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Equation D-C 
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)HH( ii  - Partial heat of mixing of 

component i from its pure state of given 

composition  both in the same state of aggregation 

and pressure. 



PROBLEM

The fugacity of component 1 in binary liquid mixture of 

component 1 and 2 at 298K and 20bar is given by  

Where  f is in bar and x1 is the mole fraction of component 1 

Determine

(a) The fugacity f1 of pure component 1

(b) The fugacity coefficient 

(c) The Henrys law constant K1

(d) The activity coefficient 
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Gibbs Duhem Equation
Consider a multi component solution having ni

moles of component i , let the property of solution be M in

terms of partial molar properties

i

t
MnnMM  -----------------------(1). 

Where n is the total no of moles of solution

Differentiating eq (1) we get

iiii dnMMdn)nm(d  ----------------(2)



We know that   21 n,n,P,TfnM
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From the definition of partial molar properties
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Subtracting equation (2) from equation (3)
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Equation (4) is the fundamental form of Gibbs Duhem

equation



Special Case

At constant temperature and pressure, dT and

dP are equal to zero. The equation becomes

  0Mdx ii

For binary solution at constant

temperature and pressure the equation becomes
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dividing equation(5) by dx1
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The above equation is Gibbs Duhem equation

for binary solution at constant temperature and

pressure in terms of Partial molar properties.

Any Data or equation on Partial molar

properties must satisfy Gibbs Duhem equation.



Problem:

Find weather the equation given below is

thermodynamically consistent
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It satisfies the GD equation, the above equation is consistent. 

G D equation 



Property Changes of Mixing:

For ideal solution

For any thermodynamic property

For non ideal solutions, we apply a correction

term known as property change of mixing.

For non ideal solutions
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is the difference in the property of the solution M and 

sum of the properties of the pure components that make it up 

all at the same temperature and pressure as the solution thus

in terms of volume 

For ideal solutions
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-change in property of component i when one

mole of pure i in its in its standard state is brought to

the solution of given composition at same T and P.

In terms of Volume
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Activity and property change of mixing

Free energy change of mixing (G): Using the definition of fugacity the change

of free energy of substance when it is brought from the standard state to the

solution, it can be written as
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Volume change of Mixing V:

The partial molar free energy(chemical potential) 

varies with pressure as 
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Enthalpy change of mixing H:

The Gibbs Helmoltz equation is given as 
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Using the above equations 
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